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1 Classical case

Let L? = SU,\SL2(C)be a homogeneous space of the second-order unimodular Hermitian p-ositive definite
matrices, which is a model of the classical Lobachevsky space. Let

g:(: ’?), ab— By = 1.

Then any z € L® can be represented as

_ [ @ty af+7b
z—gg—<ﬁa+67 ﬂ6+65)' (1.1)

The Iwasawa decomposition
g=kb, g€SL(C), keSUy,, be AN, (1.2)
AN - Borel subgroup, allows us to define the horospherical coordinates on L3. If

h hz
b_<.0 h—l))

then from (1.1) _ _
hh hhz .
— pty — - _
z =0 < 0 Zzhhz+ (hh)~! ) : (1.3)

The tripl (H + hh, 2, %) is uniquely determined by z. It is called the horospherical coordinates of z. It
follows from (1.1) and (1.3) that

H=ao+7y, Hz=aB+76 zH =pa+ by

a=(58) m=(0d) o= (20 o=(0 )

be the generators of the Lie algebra gly and d4,dp, d¢ and dp = —d4 be the corresponding Lie operators
of right shift on L3. In the horospherical coordinates they take the form

1
da = §H6H—zé‘z, dp = 0,, dC:HzE?H—z28Z+H‘26z—. (1.4)

The cecond Casimir
Q=d4+d5 +dpdc +dedp

in the horospherical coordinates takes the form

1
Q= §H26},+-§—H6H+2H’28§2. (1.5)
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A

Consider the eigenvalue problem

1 1., viooo
[;Z-Q—’r-Z]F,,(z,H,z):—4—-FV(Z,H,2), v>0. (1.6)

After the Fourier transform with respect the variables Z and z we have the ordinary differential equation
for the Fourier image of F,,(Z, H, z)
d? 3 d 2

1 1 v
rmr gt H %54+ 2)0,(5, H,s) = L-®,(5, H,5). .
(4 dH2+4 T ss+4) (5,H,s) 4<I>,,(5,H,5) (1.7)

The solutions to equation (1.7) decreasing for H — 0 are the functions

T

@U(.§,H,S) = m

H7YK,(2V/5sH™ 1) (55)5¢(5, s), (1.8)
where K, is the Bessel-Macdonold function, and ¢,(5,s) is determined uniqualy by ®,(5,H,s). Ttis

well-known fact that .

I'(v+1)

is the Fourier transform of the function

H'K, (2VEsH 1) (5s)%

P,(3 H,2)=(ZHz+ H~ )™~ L. (1.9)
After the inverse Fourier transform we obtain the solution to equation (1.7) in form
F,(:,H,z)=P,(z, H 2z)* f(z,2), (1.10)

where f(z,z) is the inverse Fourier image of o(5,s).
Function (1.9) is called the Poisson kernel, and convolution (1.10) is called the Poisson integral.

2 Quantum Lobachevsky Space

Let A,(SLy(C)),q € (0;1), be the algebra of functions on SLy(C) [2], which is defined as the factor

algebra of the associate C-algebra with generators a, 8,7, 8 with an anti-involution * : A, — A, (ab)” =
b~a* and the following relations

af = qBa. ay=qya, BE=q63, b =gby, Br =77,
ab—qBy =1, ba— ¢ Py =1, Ba" = ot B+ - 72)7" 6,
" = ga'y, fa”=a"6 38 =67,
69 =876 —q(1— Py, & =q 176, (2.1)
aa* =aa+ (1— )y, B =FB+(1—-g)&s—aa)—(1-¢")7,
W=y 6= - (1=

The rest commutative relations can be read off from the rule (ab)* = b"a™. We cast the generators into

the matrix form
, — e ,3 * a* 7*
= (5 8) w=(55)

With the comultiplication A : A; — A, @ A,

s(e9)-(s ey ).
s(28)=(% %)

the antipode S : A, — A,
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and the counit € : 4, — C

e[ g\ _ (10
Yy 6 )7L 0 1
Ay becomes a Hopf algebra. In fact it is a *-Hopf algebra since

(A(a))" = A(a”)

and
Soxo0Sox*x=1id. (2.2)
We define the *-Hopf subalgebra .4,(SU;) by the generators
— | o =g
Ag(SU2) = {w. = ( v al )} (2.3)

and the relations
atac+ 1 ve =1, aar+¢7yiv =1,

VeVe = YeVer Qe¥e = qViQc,  OcYe = Vel
. 10
Wowe = ( 01 ) (2.4)

h n .
Adan) =tea= (1§ 0 ) (25)
hh™ =h™h, hn=gqnh, hn* =q 'n"h,
nn® =n"n+(1—¢)((h"hR)"% - 1).

The Iwasawa decomposition in the quantum context takes the form [2]

Then

In a similar way

w=wws, wEA(SLC)) w. € A(SUs), wa € AJAN,). (2.6)

Natural description of commutative relations (2.1) can be obtained from the construction of the
quantum double. It was implemented in [3],where A,(SL2(C)) is described as a special quantum double
of A;(SU3), and (2.2) is derived by means of the corresponding R-matrix.

Definition 2.1 The quantum Lobachevsky space L"; is a *-subalgebra of A;(SLy(C)) generated by the

bilinear constituents
« _(oa+Ty 7B+ [ p s -

“’“’”( Bra+8y BB+66 ) s v (2.7)

Evidently, * acts as
pP=p, (s)"=s", r=r
We don’t need the explicit form of the commutative relations between p, s, s* and r - they can be derived
from (2.1).
Introduce a new generator z instead of n

Then due to (2.4), (2.5) and (2.7)

p=H=h"h=hh", s=Hz s =zH, r=zH:+H . (2.8)

H

Consider now the complex associative algebra U, (SLz(C)) with unit 1, generators A, B, C, D and the
relations

AD=DA=1, AB=q¢BA, BD=g¢DB,
AC =q71CA, CD=4q"'DC,

A2_D2

g—q7t

[‘87 C] =
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N

In fact it is the Hopf algebra where

A(4) = A 4, A(D)=D(X) D,

A(B):A®B+B®D,A(C):A®C+C®D, (2.10)
(a8)=(1) an
(£ 8)-(25 =)

There exists a non-degenerate dilinear form {u,a) : Uy x A; — C such that

(A(u),a(X)b) = (u,ab), (w X v, Alad) = (uv,a),

(1,0) = (), (. 14) = e (w), (S(u), a) = (u, S(a))

It takes the form of the generators

(5 = (" )
w0 Th=(00) w5 2)=(23)

Moreover, Ug(SL2(C)) is the *-Hopf algebra in duality, where the involution is defined by the pairing

(u,a) = (u, (S(a))"). (2.14)

The element (- (42 2) :
g+ g (A +D%)-4 ; -
Q, = - - —(BC+CB 2.1:
g 2((1._1_q)3 +2( TC ) ( ))
is a Casimir element, since it commutes with any u € Uy (SL4(C)).
The right action of u € Ug(SLo(C)) on A is defined as [4]

au = (uid)(Aa)). (2.16)
It is the algebra action:
a.(uv) = (a.u).v (2.17)
which satisfies the Leibnitz rule
(ab)u = "(aul)(b.ul) (2.18)
J

where A(u) = 2w u?. The left action is defined in the same way.
The right action on the generators takes the form

o BY . M g1 o« 8Y L (0 a
T 8 )T TNy s ) Ny s ) B0 5 )
0 ~1/2 1/2 ’
(5 5)e=(80) (0 )o-(mi k) ew

We will define now the right action of Uy(SLy2(C)) on Lg, which endows the latter with the structure
of the right *-module. For any a € L? define the normal ordering using (2.1)

tat = cra yass (2.20)
k
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where aI’k(agyk) are monoms derpending ov a*, 0%, 7", 6%(a, B, 7, 8). Then the right action on L?, which
will de denoted as (a).u, is defined as follows

(a).u :chaik(ag)k.u). (2.21)

k
The generators H, z are expressed by generators a . . . , 6% as
H=0o"a+yy, (2.22)
o0
g = a‘lﬂ-f— Z(_l)kq—zk(y*)k-plyka—zy Y= ol (2‘23)
k=0

Let w(m,r,n) = (:*)™ H"z". Then using (2.19), (2.21) - (2.23) we can define the right action of generators
A, B,C, D on monoms w(m,r, n).

u'(m) r’ n)'A = q—n+§w(m7 r’ n)!

2
gt 107

w(m,r,n).B=ygq w(m,r,n~1),

1—gq°
re1 1 — 2m re3 ] — 2n~—2r
w(m,r,n).C = ¢"*+t 7 1_qq2 u;(m—1,7'—2,71)—(1—"+“2L lzqz w(m,r,n+ 1),
w(m,r,n).D = ¢" " Fw(m,r, n). (2.24)

The second Casimir (2.15) acts on monom w(m,r,n) as

1_qr+1\2

o ) w(m, rn)+yq

. 1 — g2m 1 — g2n
w(m, r,n).Q, =q¢'=" (_1~__ ror (L= )( ")

wim—1,7-2,n-1). (2.25)

g (I—¢?)?
Remark 2.1
qli?loar’*:d-% q_l}{lzoan:dD,
q_l}{rioB:dB, qlii’loC:dC’
and

1 1
lim Q, = §Q+ T

g—1-0

3 Modified ¢-Bessel Functions

We remind the fundamental formulas from the theory of the basic hypergeometrical serieses. For any

7€(0,1)
(@ o) = 1 for n=0
L -0 ag) (1m0 ) for ms 1,
(G,Q)co = nliEIolo(WQ)n; (ala - -:akv(I)cc = (U'l:q)m - -(ak;(])oo- (31)

The q — I'-function is defined in following way

y) — (QaQ)oo (1 _q)1~u.

! (0", 9) oo

The basic hypergeometrical funcyion is

= (al; Q)n . ~(ar,Q)n n{n—1 _
r@s(al,...,a,;bl,...,bs;q,x): -1 nq 5 14s Ten 39
7;) (q:Q)n(bl;Q)n .. '(bs,q)n [( ) ] ( )

The g-exponents are
n

eo(z) =3 el <1, (3.3)

= (4,9
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fe’e) n n.—l
=512 (3.4)
n=0 q q)n
The g-exponents can be represented by forms:
= Eye)= (2 3.5)
€ = — z)=(-z,q)oo
. q g (3.5)
There are two typies of g-trigonometric functions
1 ) . . 1 ) . \
cosg T = Z[eq(zx) +eg(—ir)], sin,z = Z[eq(zx) —eg(—1z)], (3.6)
1 . . . 1
Cos; z = §[Eq(zx) + Eq(=iz)], Singz = Q—Z[Eq(z.r) = Ey(—iz)]. (3.7)
Let consider the complete elliptic integrals
/2 d n/2
- [ = K= [t
0 1—%%sin" o 0 cos?a + k?sin? o
and let K'(k)
s
Ing= - 3.
ngq 0 (3.8)
Then [6](5.3.6.1)
oQ 1
1 l1-gq 2Ing=v+z2
Q,=(1- - = K{k)dn[——K'(1)1. 3.9)
b= ( wmgiﬂmy+qumﬂ‘§ K (k) dn[—% (k)] (

where dnu = /T — k2gip? o,u = fo m (dnu is the Jacobi el liptic function}. If u = ¢ then

¢ =0and dnu =1 Tt followes from (3.8) and (3.9) for any v

q—l}{nOQy - ‘—2—

I [1] the g-Bessel function were determined as

1 . . (qv+l ) v ’52
‘]1(3 )(51 (]) - ((1 {/) ( /‘2) (O O (] ,(1 _Z)r
J(EJ(SQ) — (11/*1 Q) ( /2) O(D ( 1‘(] —qu"/'f'l)
v 3 ( q) y H 11

where @, is determined by formula (2.1). We will define the modified ¢-Bessel function J J’( q) so that
the following condition is fulfilled

[Psiq) = e F Ui 5s,g), =19 (3.10)

We will consider below the functions

] oS (1_ q2)2nsu+2n
(= )sigy = — T L 1 M I - 3.1
AR M4u+uZ;m%¢%m%“mwﬁH%f M e
2n(u+n)(1 )'771 sv+in
I8 (1 = 42 = x\ﬁ 3.12
(( q )5 q ) l/+ 1) Z ((1 g2 ) ’)1/+-’q )712u+3n ( )

If l¢| <1, the series (3.12) converges for all s # 0. Therefore ng)((l —¢%)s;¢%) is holomorphic function
outside of z = (.

Remark 3.1

lim I((1= %503 = L(s), j=12
g—1-0
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The function I(l)(( 7%)s; ¢%) is the meromorphic function outside of z = 0 with the ordinary poles in
thepomtss;lf:t 2,7'—01

Remark 3.2 Ifq — 1 — 0 the all poles of I,El)((l - ¢%)s;4%)

29-"
s 1 r=01,. ..
q

go to infinity along the real azis.

We have from (3.11) immediately

Proposition 3.1 The function L(,l)((l — q%)s; ¢?) satisfies the following relations

285 5Y (1) 2 v—1 (1) 2

Ttq I = ¢%)s19%) = s (1= ¢%)si ),
28

2 g (1 = g% s g?) = sv- 1 (D) 2 e 2

T3 (L=¢%)s;9%) =" 71,2, (1 = ¢%)s; %),

and the difference equation

1 - 2
(1- (Tq)Qq‘QSQ]f(q”ls) — (¢ +q7")f(s) + flgs) = 0 (3.13)
Analogy we have from (3.12)

Proposition 3.2 The function I,(,Z)((l — q%)s; q%) satisfies the relations

263 v (2 2 —y v — 2,
T30 100 = sy = a7 (= s ).
285 v (2 2 —v v— 2
g = a)siat) = a7 s (- ¢P)gsi ),
and the difference equation
T Vo, =u g 1_{12’7 1 &
Ja™s) = (" + 7)) +[1 = (=) (g9) = 0 (3.14)
It is easy to show that the functions (3.11) and {3.12) are connected by correlations:
Voo 9. (1 - q2 E Dl o 5 ) .
LYWL = %)s14°) = e (= L1 = g2 ) (3.15)
1—¢°
L= ¢%)s:0%) = Bp(=—5—s) I (1= ¢°)s1 %) (3.16)

4 The g-Bessel-Macdonald Function

Unfortunately the function [(1)((1 — ¢%)s;¢%) Is determined by power series (3.11) in dowain |s| < T e
only while we need a reprebentatlon of this function as series on the whole complc\ plane. But the
following proprsition takes place

Proposition 4.1 The function i )((1 —¢%)s;¢%) for s £ 0 can be represented as

Y/ 2 2 ay 1_(]2 s U - 2
(= 550 = FeleaC5 2000 () + ie ey (-5 ), ()] (11)
where 9
®,(s) = 2 (g2, 2 g g L 42
(s) = 2®i(q ~4;q, (1_q2)8), (4.2)
and ()
2 L(2;¢%)
a, = e, (—=1) (4.3)
1—q2 ! QU(I_QqQ)
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The coefficients q, (4.3) satisfy the recurrent relation

-v=1/2
Ayt =a,qg "~V

and the condition
~v41/2
aya_, = \qh\
L2 (V)T (1 = v)sinpr

Proposition 4.2 The function [52)((1 - qz)s;qz) for s £ 0 can be represented by

(1 - q2>2 2
4

(9 2 v . . - 1 -
],’;“)((1 —(12)3;(1“) = %[eqz(_ :2)<I>y((s)+zc’"" E,(~ 2q s)(I),,(-s)], (4.4)

In the classical analyses the Bessel-Macdonald function is defined as

T

K,(s) =

[1ufs) = 1, (5)] (45)

2sinvr

forv#n, andif v = p by the limit for v — p in (4.5). Here we present the correct "quantization” of
thie definition in such way that other properties are also quantized in consistent way.

Definition 4.1 The q-Bessel-Maclonald functions (q-BMF) are defined as

a

(: I 2, . a, a_, .-
KO=a%)si?) = Sqm7 eI = sit) = 10 (1 29502, (1)
with a, (4.3), j=1,2. '

As in the classical case this definition should bhe adjusted for the integer values of the index v = n hy

the limit for v — n in (4.6)
It follows from (4.1), (4.4) and (-1.6)

~v?41/2 1 _ 42
- N2y 4 -
RN = ¢%)s1q )= meq(- 58 (=), (4.7)
o3 g 2 —U2+1/2 1 —¢°
R = g%sig?) = 1 e T (1.8)

E -
2\,/(.',(1‘,,\/.: o 2

It is easu to prove using (4.7) and (4.8) the following

o . s o) 9\ 9. X X . . 9.
Proposition 4.3 q-BMJ ]\5 (= g7s: §°) s a helomorphic Junction in domain Re s P
LTy

Proposition 4.4 g-BMF 1{,52)((1 —q7)s: q%) is a holomorphic function in the domain s £ 0.
The next propositions take place
Proposition 4.5 The function 1{51)((1 — q?)s;qz) satisfies the following relations
20,
I'+yq

2(‘)5 _ - 9 —v—1 -1
1+(]s ”[\5”((}—(]')5;(/?):—3 1[\£+)1

PRIV = ¢%)siq?) = = TRV (1~ g, ),

(1= ¢%)s:4%)
and the difference equation (3.13).

Proposition 4.6 7 function [&'52)((1 - q?)s;qz) salisfies the Jollowing relations

2(75 vop(o 2 2 -y — (2 2 2
P g M =) ) = —gmh1 =1 (1 L gy oy

20 ”
sV R 2 502 = vl s—v=1y(2)
1740 A =g%)sig%) = —g+s (e

and the difference equation (3.14).

(1 = ¢%)s; ¢%)
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Proposition 4.7 For any v the functions I( )(( —q%)s;q%) and K,(,l)((l —¢*)s;q?) form a fundamential

¢g—1-0

system of solutions to the equation (3.13).
Proposition 4.8 For any v the functions 152)((1 —q¢%)s;¢%) and K ((1 —¢%)s;¢%) form a fundamential
system of solutions to the equation (3.14).
Remark 4.1
, hm KO((1—¢)sid®) = K,(s), =12
|
|

Remark 4.2 If ¢ — 1 — 0 the representations (4.1), (4-4), (4.7) and (4.8) give us the well-known
asymplotic decompositions for the functions I, (s) and K,(s) respectivety [7].

*‘ 5 The Jackson Integral Representation of the Modified
¢-Bessel Functions and ¢-Bessel-Macdonald Functions

Jackson g-integral is determined as the map an algebra of functions of one variable into a set of the
number serieses

/ f@)dyz = (1) S 4™ [F@™) + F(=a™)],
m=0
[ i@i=0-0 3 i,
i IRE 1—q>2q’" ")+ f(=g")
i Define the difference operator »
0:f(x) = 7= /@) = flaw)] (5.1)

The following formulas of the g-integration by parts are valid

1
/ o) u(x)d,x = o(1)(l) — é{=1)u( / dro(r)v(qa)d,x, (5.2)
-1

m— o<
0

[ etttz = tim ol ™) - ST - / Cos()oan)dyr. (63)
//d)(:t)(‘)xt’v(w)dq:r:nlli_ET(l)c[C5(1 V(g7 o= (=g ‘—/ O:¢(x)viqu)der. (54)

The last two expressions imply the re gularizations of the improper integrals
Let z and s be noncommuting elements and

I8 = g8z (5.5)

4 Consider the function

flz) = Za,‘rr. (5.6)

r

The rule of q-integration in the noncommutative case

/f $)dgs = /Zn ds_/za q’r(rz”z §hdys,
/(lqu(zs) = /dQZE:(Ir(zs)r = /dQZZa,.q“ir;—llzrsr‘

Define the following transformation {ff for functions f depending on the noncommutative variables s
and z (5.5). If we have function w hich has the form (5.6) and all monoms are order we will write

f(zs) = Za,(:s)r —tf(zs)i = Z arz"s"

T r
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Definition 5.1 The function f(2) is absolutely q-integrable if the series

\ qu(qm)

m=—0o0
converges absolutely.

It means, in particular, that
lim ¢™[f(¢™) =0

m—+too

It follows from (3.2) - (3.4)

Proposition 5.1

1~ g2 1 -
0®:1(~;0;q, 1 zs) = 1E,( zs) (5.7
1—gq2 1-gq? .
Ey( 5 zs) = te, (—2 zs)t. (5.8)
There is a g-analog of classical binomial formula [5]
ca_ - (@ _Tla+k)
(1—2’) —Z k" Z ’ (a)k_ ([1) ) lZ’<1)
k=0
o0 o
(q Z,(I)oo :Z(Q Jq)kzky le<1
(20 &= (g, 00
We need in two generalizations of this g-binom
(az,9)0 .
rla, b,z ¢y = x 221/ 5.9
( Y (62, ¢)eo (59
(a2%,4%)oo
R(a, b, v,z ¢% = iz 5.10)
( ) (b:“'; (I“)oo ( ’
The function (5.9) satisfies the difference equation
z[br(a, bl z, q) - (17‘((1, b: 92, Q)] = T‘((l, b1 Z, (I) - r(a, b: gz, (I) (:—)11)
The function (5.10) satisfies the difference equation
[bq”R(a by, z.¢%) ~ ak(a,b,v,qz,¢%)] = q"R(a,b,v,2,¢%) - R(a,b,y.qz,¢%). (5.12)

Lemma 5.1 Jf la| < |b] the function r(a,b,z,q) can be represented as the sum of the partial functions

N o0 —k
e e o o E (5:13)
The series (5.13) converges absolutely for any z #6717k g =01,
Remark 5.1 /f0 < la| < |b] then
oo k
Equ))“ (<q/ bq>q S 2 <(qb/;>i (?‘fiﬁi%- (5:14)
[fa=0 then
11 [\‘3": (—1)kg "5 | (5.15)

Assume that ¢ = €q?, b = €¢?®’ e =41 in (5.10). Then we have from (5.14)
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Corollary 5.1

(€222, Do _ o (0750, q%)e o (P70, gP)pgle

(5‘12'622)‘12)00 =z (42, %) oo ];) (4%, ¢2)e(1 - Cz2q2(ﬁ+k))' (5.16

Remark 5.2 As it follows from [5](1.3.2)
(¢g**2%,¢")o0 - ifqu;ik (¢%*=", ¢ 22k (5.17)
(€072, N (@2, %) A7)

which converges in the domain |z| < q P,

It follows from Lemma 5.1 that if 7 = 0 (5.16) is the meromorphic function with the ordinary poles
z=+eqg Pk, k=0,1,..,and hence it is the analitic continuation of (5.17).

Corollary 5.2 For an arbitrary real s # 0

"}1_{“00 leg (7 )

Corollary 5.3 For real s # 0 and inleger m

1_q2q—ms)| < Eq(q’l)eq(q) )
= 1+(1_—_243)2q—21n52

| cosg(

Corollary 5.4 Ifa > 3+ 1 and real 2 £ 0, then

(_q2(122,q2)00 < Ca,ﬁ
(—g%2%,¢%)e ~ 1+ 277

Remark 5.3 Let a = €¢®®,b = eq?® in (5.10) and (5.12). Then if ¢ — 1 =0 the difference equation
(5.12) takes the form of the differential equation

(1= ?)R(z) = [y + (20 =23 — N2 R(z) =0 (5.18)

with solution

R(z) =Cz"(1 — ezz)f@_“.

Proposition 5.2 Modified g-Besscl function (¢-MBF) L(,l) for v > 0 can be represented as the g-inlegral

IE9((1 = ¢%)si4°) = Lt /1 dye L) g (2 « )(s/2)" (5.19
v q7)5:4 2rq2(y 1/2)1\.12(1/2) . q ((12u+122’q2) q 5 Z5 S ) 5.19)

Proof. Consider the g-integral

) 1 1 — 2
$96) = [ de R CG ) (520)

where gf;l)(z) is such function that it is absolutely convergent. Require that Sg”(s)(s/Q)" satisfies (3.13).
Then Sgl)(s) satisfies the equation

. - ( 2y 1- 2 2 -9 - 2 .
SO 1s) = S(s) = ¢ [50(s) - 5 (as)) = (508 () (5.21)

Substituting (5.20) in (5.21), using the rule of g-integration, (5.8) and (5.2), we come to the difference
equation for f,gl)(z)

U2 f(z) - g7 D (g2)] = SV (=) = £ (a2), (5.22)
It coincides with (5.12) for a = ¢%,b = ¢***!,7 = 0, and hence
2.2 2
() = AL e (5.23)

- (q2u+122’ q2)°o :
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1)(s)(s/'Z)" is a solution to (3.13) and therefore it can be represented as (see Proposition 4.7)

ST)(5/2) = AIED((1 - ¢%)53¢%) + BRE((1 = q%)s: ¢2).

Multiplying the both sides on (s/2)” and putting s = 0 from (3.11) ( (4.6) we obtain B = 0. Multiplying
again on (s/2)7" and assuming s = 0 we come to

1

1
d,z 51) A Er —
/—1 227 () Lp(v +1)

It follows from [5] (1.11.7)

2 2 (
= Toa +qu2(V+ 1/2; I/Q)Fq2(l/+ 1) = mIqQ(V—}- 1/2)Fq2(1/2)

and we come to (5.19).m At the same way we can prove the following

Proposition 5.3 The q-MBF L(,Z)((l —¢%)s;4%) for v > 0 has the following q-integral representation

1+¢ o
2F42(V+ I/Q)qu(l/Q)

(1 ¢%)s;¢%) =

1 2,2 2 2
(4°2°,¢")oo 00 LTE ity v
X/_ldqz(qzuﬂz'zqu)OC 0@y ( ,O,q,—Q——q zs)(s/2)". (5.24)

Remark 5.4 If ¢ — 1 — 0 the equation (5.22) takes the form of the differential equation (see Remark
5.3)
(L= + 2= 1D:f(2) =
The solution to this equation 1s
fol2) = C(1= 28712,
which leads to the classical integral representation of Modified Bessel function [7] (7.12.10)

_ (Q/Q)U ' Lw-1/2 25 g
L(s) = T(v+ 1/2)r(1/2)/_1(1_“’2) et d:.

Proposition 5.4 The ¢-BMF [\",{;1)((1 ~q*)s;q%) for v >0 can be represented by the q-integral

q—u2+1/2Fq2(U +1/2)1,2(1/2) Ay
1Q, -

KO~ ¢Ys54%) =

»q ) l - q2 —-v = =4
/ dgz - “2“+1~2,q2)oc E, (i 5 z8)(s/2)7", (5.25)
where Q, 1s defined by (3.9).
Proposition 5.5 The g-BMF [\"UQ)((l —q%)s;q%) for v > 3/2 can be represenied by the g-integral

‘I—U2+Urq2(’/ + 1/2)Fq7(1/2)

RO - ¢%)s,¢%) =

4Qu 2 ay
oo _ z;/+1zz)(200 .1_ 2 oy B
x/ dng-lét:é—qz)j—) 0®1(—;0;q,1 2(1 zs)(s/2)7", (5.26)

where Qyyy s defined by (3 9).

Remark 5.5 Ifq — 1-0 the representations (5.25) and (5.26) give us the classical integral representation
of Bessel-Macdonald function (the Fourier integral) [7] (7.12.27)

- _ (U+ 1/2 e 1/2 [EX
Rols) = =55 1/2) / (2 +1) dz.
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