The Quantum Lobachevsky Space and the q-Bessel-Macdonald Functions

M.A.Olshanetsky¹ ITEP, 117259, Moscow e-mail olshanez@vxdesy.desy.de

V.-B.K.Rogov²
MIIT, 101475, Moscow
e-mail m10106@sucemi.bitnet

1 Classical case

Let $L^3 = SU_2 \backslash SL_2(\mathbf{C})$ be a homogeneous space of the second-order unimodular Hermitian positive definite matrices, which is a model of the classical Lobachevsky space. Let

$$g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}, \qquad \alpha\delta - \beta\gamma = 1.$$

Then any $x \in L^3$ can be represented as

$$x = g^{\dagger} g = \begin{pmatrix} \bar{\alpha}\alpha + \bar{\gamma}\gamma & \bar{\alpha}\beta + \bar{\gamma}\delta \\ \bar{\beta}\alpha + \bar{\delta}\gamma & \bar{\beta}\beta + \bar{\delta}\delta \end{pmatrix}. \tag{1.1}$$

The Iwasawa decomposition

$$g = kb, \quad g \in SL_2(\mathbf{C}), \quad k \in SU_2, \quad b \in AN,$$
 (1.2)

AN - Borel subgroup, allows us to define the horospherical coordinates on L^3 . If

$$b = \left(\begin{array}{cc} h & hz \\ 0 & h^{-1} \end{array}\right),$$

then from (1.1)

$$x = b^{\dagger}b = \begin{pmatrix} \bar{h}h & \bar{h}hz \\ 0 & \bar{z}\bar{h}hz + (\bar{h}h)^{-1} \end{pmatrix}. \tag{1.3}$$

The tripl $(H + \bar{h}h, z, \bar{z})$ is uniquely determined by x. It is called the horospherical coordinates of x. It follows from (1.1) and (1.3) that

$$H = \bar{\alpha}\alpha + \bar{\gamma}\gamma, \quad Hz = \bar{\alpha}\beta + \bar{\gamma}\delta, \quad \bar{z}H = \bar{\beta}\alpha + \bar{\delta}\gamma.$$

Let

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \quad B = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \quad C = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), \quad D = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right)$$

be the generators of the Lie algebra gl_2 and d_A, d_B, d_C and $d_D = -d_A$ be the corresponding Lie operators of right shift on L^3 . In the horospherical coordinates they take the form

$$d_A = \frac{1}{2}H\partial_H - z\partial_z, \quad d_B = \partial_z, \quad d_C = Hz\partial_H - z^2\partial_z + H^{-2}\partial_{\bar{z}}. \tag{1.4}$$

The cecond Casimir

$$\Omega = d_A^2 + d_D^2 + d_B d_C + d_C d_B$$

in the horospherical coordinates takes the form

$$\Omega = \frac{1}{2}H^2\partial_H^2 + \frac{3}{2}H\partial_H + 2H^{-2}\partial_{\bar{z}z}^2.$$
 (1.5)

¹Supported in part by RFFI-96-18046 grant

²Supported in part by NIOKR MPS grant

Consider the eigenvalue problem

$$\left[\frac{1}{2}\Omega + \frac{1}{4}\right]F_{\nu}(\bar{z}, H, z) = \frac{\nu^2}{4}F_{\nu}(\bar{z}, H, z), \quad \nu > 0. \tag{1.6}$$

After the Fourier transform with respect the variables \bar{z} and z we have the ordinary differential equation for the Fourier image of $F_{\nu}(\bar{z}, H, z)$

$$\left(\frac{1}{4}H^{2}\frac{d^{2}}{dH^{2}} + \frac{3}{4}H\frac{d}{dH} - H^{-2}\bar{s}s + \frac{1}{4}\right)\Phi_{\nu}(\bar{s}, H, s) = \frac{\nu^{2}}{4}\Phi_{\nu}(\bar{s}, H, s). \tag{1.7}$$

The solutions to equation (1.7) decreasing for $H \to 0$ are the functions

$$\Phi_{\nu}(\bar{s}, H, s) = \frac{\pi}{\Gamma(\nu + 1)} H^{-1} K_{\nu} (2\sqrt{\bar{s}s} H^{-1}) (\bar{s}s)^{\frac{\nu}{2}} \phi(\bar{s}, s), \tag{1.8}$$

where K_{ν} is the Bessel-Macdonold function, and $\phi_{\nu}(\bar{s},s)$ is determined uniqually by $\Phi_{\nu}(\bar{s},H,s)$. It is well-known fact that

 $\frac{\pi}{\Gamma(\nu+1)} H^{-1} K_{\nu} (2\sqrt{\bar{s}s} H^{-1}) (\bar{s}s)^{\frac{\nu}{2}}$

is the Fourier transform of the function

$$P_{\nu}(\bar{z}, H, z) = (\bar{z}Hz + H^{-1})^{-\nu - 1}.$$
(1.9)

After the inverse Fourier transform we obtain the solution to equation (1.7) in form

$$F_{\nu}(\bar{z}, H, z) = P_{\nu}(\bar{z}, H, z) * f(\bar{z}, z),$$
 (1.10)

where $f(\bar{z}, z)$ is the inverse Fourier image of $\phi(\bar{s}, s)$.

Function (1.9) is called the Poisson kernel, and convolution (1.10) is called the Poisson integral.

2 Quantum Lobachevsky Space

Let $\mathcal{A}_q(SL_2(\mathbf{C})), q \in (0, 1)$, be the algebra of functions on $SL_2(\mathbf{C})$ [2], which is defined as the factor algebra of the associate **C**-algebra with generators $\alpha, \beta, \gamma, \delta$ with an anti-involution $*: \mathcal{A}_q \to \mathcal{A}_q, (ab)^* = b^*a^*$ and the following relations

$$\alpha\beta = q\beta\alpha, \quad \alpha\gamma = q\gamma\alpha, \quad \beta\delta = q\delta\beta, \quad \gamma\delta = q\delta\gamma, \quad \beta\gamma = \gamma\beta,$$

$$\alpha\delta - q\beta\gamma = 1, \quad \delta\alpha - q^{-1}\beta\gamma = 1, \quad \beta\alpha^* = q^{-1}\alpha^*\beta + q^{-1}(1 - q^2)\gamma^*\delta,$$

$$\gamma\alpha^* = q\alpha^*\gamma, \quad \delta\alpha^* = \alpha^*\delta, \quad \gamma\beta^* = \beta^*\gamma,$$

$$\delta\beta^* = q\beta^*\delta - q(1 - q^2)\alpha^*\gamma, \quad \delta\gamma^* = q^{-1}\gamma^*\delta,$$

$$\alpha\alpha^* = \alpha^*\alpha + (1 - q^2)\gamma^*\gamma, \quad \beta\beta^* = \beta^*\beta + (1 - q^2)(\delta^*\delta - \alpha^*\alpha) - (1 - q^2)^2\gamma^*\gamma,$$

$$\gamma\gamma^* = \gamma^*\gamma, \quad \delta\delta^* = \delta^*\delta - (1 - q^2)\gamma^*\gamma.$$
(2.1)

The rest commutative relations can be read off from the rule $(ab)^* = b^*a^*$. We cast the generators into the matrix form

$$w = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}, \quad w^* = \begin{pmatrix} \alpha^* & \gamma^* \\ \beta^* & \delta^* \end{pmatrix}.$$

With the comultiplication $\Delta: \mathcal{A}_q
ightarrow \mathcal{A}_q igotimes \mathcal{A}_q$

$$\Delta \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right) = \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right) \bigotimes \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right),$$

the antipode $S: \mathcal{A}_q \to \mathcal{A}_q$

$$S\left(\begin{array}{cc}\alpha & \beta\\ \gamma & \delta\end{array}\right) = \left(\begin{array}{cc}\delta & -q^{-1}\beta\\ -q\gamma & \alpha\end{array}\right),$$

and the counit $\epsilon: \mathcal{A}_q \to \mathbf{C}$

$$\epsilon \left(\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$$

 \mathcal{A}_q becomes a Hopf algebra. In fact it is a *-Hopf algebra since

$$(\Delta(a))^* = \Delta(a^*)$$

and

$$S \circ * \circ S \circ * = id. \tag{2.2}$$

We define the *-Hopf subalgebra $A_q(SU_2)$ by the generators

$$\mathcal{A}_q(SU_2) = \{ \omega_c = \begin{pmatrix} \alpha_c & -q\gamma_c^* \\ \gamma_c & \alpha_c^* \end{pmatrix} \}$$
 (2.3)

and the relations

$$\alpha_c^*\alpha_c + \gamma_c^*\gamma_c = 1, \quad \alpha_c\alpha_c^* + q^2\gamma_c^*\gamma_c = 1,$$

$$\gamma_c^* \gamma_c = \gamma_c \gamma_c^*, \quad \alpha_c \gamma_c^* = q \gamma_c^* \alpha_c, \quad \alpha_c \gamma_c = q \gamma_c \alpha_c.$$

Then

$$\omega_c^* \omega_c = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. \tag{2.4}$$

In a similar way

$$\mathcal{A}_q(AN_q) = \{ \omega_d = \begin{pmatrix} h & n \\ 0 & h^{-1} \end{pmatrix} \}$$
 (2.5)

$$hh^* = h^*h, \quad hn = qnh, \quad hn^* = q^{-1}n^*h,$$

$$nn^* = n^*n + (1 - q^2)((h^*h)^{-2} - 1).$$

The Iwasawa decomposition in the quantum context takes the form [2]

$$\omega = \omega_c \omega_d, \quad \omega \in \mathcal{A}_q(SL_2(\mathbf{C})), \omega_c \in \mathcal{A}_q(SU_2), \quad \omega_d \in \mathcal{A}_q(AN_q).$$
 (2.6)

Natural description of commutative relations (2.1) can be obtained from the construction of the quantum double. It was implemented in [3], where $\mathcal{A}_q(SL_2(\mathbf{C}))$ is described as a special quantum double of $\mathcal{A}_q(SU_2)$, and (2.2) is derived by means of the corresponding R-matrix.

Definition 2.1 The quantum Lobachevsky space \mathbf{L}_q^3 is a *-subalgebra of $\mathcal{A}_q(SL_2(\mathbf{C}))$ generated by the bilinear constituents

$$\omega^* \omega = \begin{pmatrix} \alpha^* \alpha + \gamma^* \gamma & \alpha^* \beta + \gamma^* \delta \\ \beta^* \alpha + \delta^* \gamma & \beta^* \beta + \delta^* \delta \end{pmatrix} = \begin{pmatrix} p & s \\ s^* & r \end{pmatrix}$$
 (2.7)

Evidently, * acts as

$$p^* = p$$
, $(s)^* = s^*$, $r^* = r$.

We don't need the explicit form of the commutative relations between p, s, s^* and r - they can be derived from (2.1).

Introduce a new generator z instead of n

$$n = hz$$

Then due to (2.4), (2.5) and (2.7)

$$p = H = h^* h = hh^*, \quad s = Hz, \quad s^* = z^* H, \quad r = z^* Hz + H^{-1}.$$
 (2.8)

Consider now the complex associative algebra $U_q(SL_2(\mathbf{C}))$ with unit 1, generators A, B, C, D and the relations

$$AD = DA = 1, \quad AB = qBA, \quad BD = qDB,$$

 $AC = q^{-1}CA, \quad CD = q^{-1}DC,$
 $[B, C] = \frac{A^2 - D^2}{q - q^{-1}}.$ (2.9)

In fact it is the Hopf algebra where

$$\Delta(A) = A \bigotimes A, \quad \Delta(D) = D \bigotimes D,$$

$$\Delta(B) = A \bigotimes B + B \bigotimes D, \Delta(C) = A \bigotimes C + C \bigotimes D, \tag{2.10}$$

$$\epsilon \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$
 (2.11)

$$\epsilon \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} D & -q^{-1}B \\ -qC & A \end{pmatrix}.$$
 (2.12)

There exists a non-degenerate dilinear form $\langle u,a\rangle:U_q\times\mathcal{A}_q\to\mathbf{C}$ such that

$$\langle \Delta(u), a \bigotimes b \rangle = \langle u, ab \rangle, \quad \langle u \bigotimes v, \Delta(a) \rangle = \langle uv, a \rangle,$$

$$\langle 1_U, a \rangle = \epsilon_{\mathcal{A}}(a), \langle u, 1_{\mathcal{A}} \rangle = \epsilon_U(u), \langle S(u), a \rangle = \langle u, S(a) \rangle.$$

It takes the form of the generators

$$\langle A, \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \rangle = \begin{pmatrix} q^{1/2} & 0 \\ 0 & q^{-1/2} \end{pmatrix},$$

$$\langle D, \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \rangle = \begin{pmatrix} q^{-1/2} & 0 \\ 0 & q^{1/2} \end{pmatrix},$$

$$\langle B, \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \rangle = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \langle C, \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \rangle = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

$$(2.13)$$

Moreover, $U_q(SL_2(\mathbf{C}))$ is the *-Hopf algebra in duality, where the involution is defined by the pairing

$$\langle u^*, a \rangle = \langle u, (\bar{S}(a))^* \rangle. \tag{2.14}$$

The element

$$\Omega_q = \frac{(q^{-1} + q)(A^2 + D^2) - 4}{2(q^{-1} - q)^2} + \frac{1}{2}(BC + CB)$$
(2.15)

is a Casimir element, since it commutes with any $u \in U_q(SL_2(\mathbb{C}))$.

The right action of $u \in U_q(SL_2(\mathbf{C}))$ on \mathcal{A} is defined as [4]

$$a.u = (u \bigotimes id)(\Delta(a)). \tag{2.16}$$

It is the algebra action:

$$a.(uv) = (a.u).v$$
 (2.17)

which satisfies the Leibnitz rule

$$(ab).u = \sum_{j} (a.u_{j}^{1})(b.u_{j}^{2})$$
(2.18)

where $\Delta(u) = \sum_j u_j^1 \otimes u_j^2$. The left action is defined in the same way.

The right action on the generators takes the form

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} . A = \begin{pmatrix} q^{1/2}\alpha & q^{-1/2}\beta \\ q^{1/2}\gamma & q^{-1/2}\delta \end{pmatrix}, \quad \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} . B = \begin{pmatrix} 0 & \alpha \\ 0 & \gamma \end{pmatrix},$$
$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} . C = \begin{pmatrix} \beta & 0 \\ \delta & 0 \end{pmatrix}, \quad \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} . D = \begin{pmatrix} q^{-1/2}\alpha & q^{1/2}\beta \\ q^{-1/2}\gamma & q^{1/2}\delta \end{pmatrix}. \tag{2.19}$$

We will define now the right action of $U_q(SL_2(\mathbb{C}))$ on \mathbb{L}_q^3 , which endows the latter with the structure of the right *-module. For any $a \in \mathbb{L}_q^3$ define the normal ordering using (2.1)

$$\ddagger a \ddagger = \sum_{k} c_{k} a_{1,k}^{*} a_{2,k} \tag{2.20}$$

where $a_{1,k}^*(a_{2,k})$ are monoms derpending ov $\alpha^*, \beta^*, \gamma^*, \delta^*(\alpha, \beta, \gamma, \delta)$. Then the right action on \mathbf{L}_q^3 , which will de denoted as (a).u, is defined as follows

$$(a).u = \sum_{k} c_{k} a_{1,k}^{*}(a_{2,k}.u).$$
 (2.21)

The generators H, z are expressed by generators α, \ldots, δ^* as

$$H = \alpha^* \alpha + \gamma^* \gamma, \tag{2.22}$$

$$z = \alpha^{-1}\beta + \sum_{k=0}^{\infty} (-1)^k q^{-2k} (y^*)^{k+1} y^k \alpha^{-2}, \quad y = \gamma \alpha^{-1}.$$
 (2.23)

Let $w(m, r, n) = (z^*)^m H^r z^n$. Then using (2.19), (2.21) - (2.23) we can define the right action of generators A, B, C, D on monoms w(m, r, n).

$$w(m,r,n).A = q^{-n+\frac{r}{2}}w(m,r,n),$$

$$w(m,r,n).B = q^{-n+\frac{r+1}{2}}\frac{1-q^{2n}}{1-q^2}w(m,r,n-1),$$

$$w(m,r,n).C = q^{n+\frac{r-1}{2}}\frac{1-q^{2m}}{1-q^2}w(m-1,r-2,n) - q^{-n+\frac{r+3}{2}}\frac{1-q^{2n-2r}}{1-q^2}w(m,r,n+1),$$

$$w(m,r,n).D = q^{n-\frac{r}{2}}w(m,r,n).$$

$$(2.24)$$

The second Casimir (2.15) acts on monom w(m, r, n) as

$$w(m,r,n).\Omega_q = q^{1-r} \left(\frac{1-q^{r+1}}{1-q^2}\right)^2 w(m,r,n) + q^{r-1} \frac{(1-q^{2m})(1-q^{2n})}{(1-q^2)^2} w(m-1,r-2,n-1). \quad (2.25)$$

Remark 2.1

$$\lim_{q \to 1-0} \partial_q A = d_A, \qquad \lim_{q \to 1-0} \partial_q D = d_D,$$

$$\lim_{q \to 1-0} B = d_B, \qquad \lim_{q \to 1-0} C = d_C,$$

and

$$\lim_{q \to 1-0} \Omega_q = \frac{1}{2}\Omega + \frac{1}{4}.$$

3 Modified q-Bessel Functions

We remind the fundamental formulas from the theory of the basic hypergeometrical serieses. For any $q \in (0,1)$

$$(a,q)_{n} = \begin{cases} 1 & for \quad n=0\\ (1-a)(1-aq)\dots(1-aq^{n-1}) & for \quad n\geq 1, \end{cases},$$

$$(a,q)_{\infty} = \lim_{n\to\infty} (a,q)_{n}, \quad (a_{1},\dots,a_{k},q)_{\infty} = (a_{1},q)_{\infty}\dots(a_{k},q)_{\infty}.$$
(3.1)

The $q - \Gamma$ -function is defined in following way

$$\Gamma_q(\nu) = \frac{(q,q)_{\infty}}{(q^{\nu},q)_{\infty}} (1-q)^{1-\nu}.$$

The basic hypergeometrical function is

$${}_{r}\Phi_{s}(a_{1},\ldots,a_{r};b_{1},\ldots,b_{s};q,x) = \sum_{n=0}^{\infty} \frac{(a_{1},q)_{n}\ldots(a_{r},q)_{n}}{(q,q)_{n}(b_{1},q)_{n}\ldots(b_{s},q)_{n}} [(-1)^{n}q^{\frac{n(n-1)}{2}}]^{1+s-r}x^{n}$$
(3.2)

The q-exponents are

$$e_q(x) = \sum_{n=0}^{\infty} \frac{x^n}{(q,q)_n}, \qquad |x| < 1,$$
 (3.3)

$$E_q(x) = \sum_{n=0}^{\infty} \frac{q^{\frac{n(n-1)}{2}} x^n}{(q,q)_n}.$$
(3.4)

The q-exponents can be represented by forms:

$$e_q(x) = \frac{1}{(x,q)_{\infty}}, \qquad E_q(x) = (-x,q)_{\infty}.$$
 (3.5)

There are two typies of q-trigonometric functions

$$\cos_q x = \frac{1}{2} [e_q(ix) + e_q(-ix)], \quad \sin_q x = \frac{1}{2i} [e_q(ix) - e_q(-ix)], \tag{3.6}$$

$$\cos_q x = \frac{1}{2} [E_q(ix) + E_q(-ix)], \quad \sin_q x = \frac{1}{2i} [E_q(ix) - E_q(-ix)]. \tag{3.7}$$

Let consider the complete elliptic integrals

$$\mathbf{K}(k) = \int_0^{\pi/2} \frac{d\alpha}{\sqrt{1 - k^2 \sin^2 \alpha}}, \qquad \mathbf{K}'(k) = \int_0^{\pi/2} \frac{d\alpha}{\sqrt{\cos^2 \alpha + k^2 \sin^2 \alpha}},$$

and let

$$\ln q = -\frac{\pi \mathbf{K}'(k)}{\mathbf{K}(k)}.$$
(3.8)

Then [6](5.3.6.1)

$$\mathbf{Q}_{\nu} = (1 - q) \sum_{m = -\infty}^{\infty} \frac{1}{q^{m - \nu + \frac{1}{2}} + q^{-m + \nu - \frac{1}{2}}} = \frac{1 - q}{\pi} \mathbf{K}(k) \operatorname{dn}\left[\frac{2 \ln q^{-\nu + \frac{1}{2}}}{\pi} \mathbf{K}'(k)\right], \tag{3.9}$$

where $\operatorname{dn} u = \sqrt{1 - k^2 \sin^2 \phi}$, $u = \int_0^{\phi} \frac{d\alpha}{\sqrt{1 - k^2 \sin^2 \alpha}}$ (dn u is the Jacobi elliptic function). If u = 0 then $\phi = 0$ and $\operatorname{dn} u = 1$. It follows from (3.8) and (3.9) for any ν

$$\lim_{q \to 1-0} \mathbf{Q}_{\nu} = \frac{\pi}{2}.$$

In [1] the q-Bessel function were determined as

$$J_{\nu}^{(1)}(s;q) = \frac{(q^{\nu+1},q)_{\infty}}{(q,q)_{\infty}} (s/2)^{\nu} {}_{2}\Phi_{1}(0,0;q^{\nu+1};q,-\frac{s^{2}}{4}),$$

$$J_{\nu}^{(2)}(s;q) = \frac{(q^{\nu+1},q)_{\infty}}{(q,q)_{\infty}} (s/2)^{\nu} {}_{0}\Phi_{1}(-;q^{\nu+1};q,-\frac{s^{2}q^{\nu+1}}{4})$$

where $_{r}\Phi_{s}$ is determined by formula (2.1). We will define the modified q-Bessel function $I_{\nu}^{(j)}(s;q)$ so that the following condition is fulfilled

$$I_{\nu}^{(j)}(s;q) = e^{-i\frac{\nu\tau}{2}} J_{\nu}^{(j)}(e^{i\frac{\pi}{2}}s;q), \qquad j = 1, 2$$
(3.10)

We will consider below the functions

$$I_{\nu}^{(1)}((1-q^2)s;q^2) = \frac{1}{\Gamma_{q^2}(\nu+1)} \sum_{n=0}^{\infty} \frac{(1-q^2)^{2n} s^{\nu+2n}}{(q^2,q^2)_n (q^{2\nu+2},q^2)_n 2^{\nu+2n}}, \quad |s| < \frac{1}{1-q^2},$$
(3.11)

$$I_{\nu}^{(2)}((1-q^2)s;q^2) = \frac{1}{\Gamma_{q^2}(\nu+1)} \sum_{n=0}^{\infty} \frac{q^{2n(\nu+n)}(1-q^2)^{2n}s^{\nu+2n}}{(q^2,q^2)_n(q^{2\nu+2},q^2)_n 2^{\nu+2n}}.$$
 (3.12)

If |q| < 1, the series (3.12) converges for all $s \neq 0$. Therefore $I_{\nu}^{(2)}((1-q^2)s;q^2)$ is holomorphic function outside of z = 0.

Remark 3.1

$$\lim_{q \to 1-0} I_{\nu}^{(j)}((1-q^2)s;q^2) = I_{\nu}(s), \quad j = 1, 2$$

The function $I_{\nu}^{(1)}((1-q^2)s;q^2)$ is the meromorphic function outside of z=0 with the ordinary poles in the points $s\neq \pm \frac{2q^{-r}}{1-q^2}, r=0,1,\ldots$

Remark 3.2 If $q \rightarrow 1-0$ the all poles of $I_{\nu}^{(1)}((1-q^2)s;q^2)$

$$s \neq \pm \frac{2q^{-r}}{1 - q^2}, \qquad r = 0, 1, \dots$$

go to infinity along the real axis.

We have from (3.11) immediately

Proposition 3.1 The function $I_{\nu}^{(1)}((1-q^2)s;q^2)$ satisfies the following relations

$$\frac{2\partial_s}{1+q} s^{\nu} I_{-\nu}^{(1)}((1-q^2)s;q^2) = s^{\nu-1} I_{-\nu+1}^{(1)}((1-q^2)s;q^2),$$

$$\frac{2\partial_s}{1+q} s^{\nu} I_{\nu}^{(1)}((1-q^2)s;q^2) = s^{\nu-1} I_{\nu-1}^{(1)}((1-q^2)s;q^2),$$

and the difference equation

$$\left[1 - \left(\frac{1 - q^2}{2}\right)^2 q^{-2} s^2\right] f(q^{-1} s) - \left(q^{\nu} + q^{-\nu}\right) f(s) + f(q s) = 0 \tag{3.13}$$

Analogy we have from (3.12)

Proposition 3.2 The function $I_{\nu}^{(2)}((1-q^2)s;q^2)$ satisfies the relations

$$\frac{2\partial_s}{1+q} s^{\nu} I_{-\nu}^{(2)}((1-q^2)s;q^2) = q^{-\nu+1} s^{\nu-1} I_{-\nu+1}^{(2)}((1-q^2)qs;q^2),$$

$$\frac{2\partial_s}{1+q} s^{\nu} I_{\nu}^{(2)}((1-q^2)s;q^2) = q^{-\nu+1} s^{\nu-1} I_{\nu-1}^{(2)}((1-q^2)qs;q^2),$$

and the difference equation

$$f(q^{-1}s) - (q^{\nu} + q^{-\nu})f(s) + \left[1 - \left(\frac{1 - q^2}{2}\right)^2 s^2\right]f(qs) = 0$$
(3.14)

It is easy to show that the functions (3.11) and (3.12) are connected by correlations:

$$I_{\nu}^{(1)}((1-q^2)s;q^2) = c_{q^2}(\frac{(1-q^2)^2}{4}z^2)I_{\nu}^{(2)}((1-q^2)s;q^2)$$
(3.15)

$$I_{\nu}^{(2)}((1-q^2)s;q^2) = E_{q^2}(-\frac{1-q^2}{2}s^2)I_{\nu}^{(1)}((1-q^2)s;q^2)$$
(3.16)

4 The q-Bessel-Macdonald Function

Unfortunately the function $I_{\nu}^{(1)}((1-q^2)s;q^2)$ is determined by power series (3.11) in domain $|s| < \frac{2}{1-q^2}$ only while we need a representation of this function as series on the whole complex plane. But the following proprsition takes place

Proposition 4.1 The function $I_{\nu}^{(1)}((1-q^2)s;q^2)$ for $s \neq 0$ can be represented as

$$I_{\nu}^{(1)}((1-q^2)s;q^2) = \frac{a_{\nu}}{\sqrt{s}} [e_q(\frac{1-q^2}{2}z)\Phi_{\nu}(s) + ie^{i\nu\pi}e_q(-\frac{1-q^2}{2}z)\Phi_{\nu}(-s)], \tag{4.1}$$

where

$$\Phi_{\nu}(s) = {}_{2}\Phi_{1}(q^{\nu+1/2}, q^{-\nu+1/2}; -q; q, \frac{2q}{(1-q^{2})s}), \tag{4.2}$$

and

$$a_{\nu} = \sqrt{\frac{2}{1 - q^2}} e_q(-1) \frac{I_{\nu}^{(2)}(2; q^2)}{\Phi_{\nu}(\frac{2}{1 - q^2})}$$
(4.3)

The coefficients a_{ν} (4.3) satisfy the recurrent relation

$$a_{\nu+1} = a_{\nu} q^{-\nu - 1/2}$$

and the condition

$$a_{\nu}a_{-\nu} = \frac{q^{-\nu+1/2}}{2\Gamma_{q^2}(\nu)\Gamma_{q^2}(1-\nu)\sin\nu\pi}.$$

Proposition 4.2 The function $I_{\nu}^{(2)}((1-q^2)s;q^2)$ for $s \neq 0$ can be represented by

$$I_{\nu}^{(2)}((1-q^2)s;q^2) = \frac{a_{\nu}}{\sqrt{s}} \left[e_{q^2} \left(\frac{(1-q^2)^2}{4} z^2 \right) \Phi_{\nu}(s) + i e^{i\nu\pi} E_q \left(-\frac{1-q^2}{2} s \right) \Phi_{\nu}(-s) \right], \tag{4.4}$$

In the classical analyses the Bessel-Macdonald function is defined as

$$K_{\nu}(s) = \frac{\pi}{2\sin\nu\pi} [I_{-\nu}(s) - I_{\nu}(s)]$$
(4.5)

for $\nu \neq n$, and if $\nu = n$ by the limit for $\nu \to n$ in (4.5). Here we present the correct "quantization" of thie definition in such way that other properties are also quantized in consistent way.

Definition 4.1 The q-Bessel-Maclonald functions (q-BMF) are defined as

$$K_{\nu}^{(j)}((1-q^2)s;q^2) = \frac{1}{2}q^{-\nu^2+\nu}\Gamma_{q^2}(\nu)\Gamma_{q^2}(1-\nu)\left[\sqrt{\frac{a_{\nu}}{a_{-\nu}}}I_{-\nu}^{(j)}((1-q^2)s;q^2) - \sqrt{\frac{a_{-\nu}}{a_{\nu}}}I_{\nu}^{(j)}((1-q^2)s;q^2)\right], \quad (4.6)$$
with a_{ν} (4.3), $i=1,2$

with a_{ν} (4.3), j = 1, 2.

As in the classical case this definition should be adjusted for the integer values of the index $\nu = n$ by the limit for $\nu \to n$ in (4.6)

It follows from (4.1), (4.4) and (4.6)

$$K_{\nu}^{(1)}((1-q^2)s;q^2) = \frac{q^{-\nu^2+1/2}}{2\sqrt{a_{\nu}a_{-\nu}}\sqrt{s}}e_q(-\frac{1-q^2}{2}s)\Phi_{\nu}(-s), \tag{4.7}$$

$$K_{\nu}^{(2)}((1-q^2)s;q^2) = \frac{q^{-\nu^2+1/2}}{2\sqrt{a_{\nu}a_{-\nu}}\sqrt{s}}E_q(-\frac{1-q^2}{2}s)\Phi_{\nu}(-s), \tag{4.8}$$

It is easu to prove using (4.7) and (4.8) the following

Proposition 4.3 q-BMF $K_{\nu}^{(1)}((1-q^2)s;q^2)$ is a holomorphic function in domain $\operatorname{Re} s > \frac{2q}{1-q^2}$

Proposition 4.4 q-BMF $K_{\nu}^{(2)}((1-q^2)s;q^2)$ is a holomorphic function in the domain $s \neq 0$.

The next propositions take place

Proposition 4.5 The function $K_{\nu}^{(1)}((1-q^2)s;q^2)$ satisfies the following relations

$$\frac{2\partial_s}{1+q} s^{\nu} K_{\nu}^{(1)}((1-q^2)s;q^2) = -s^{\nu-1} K_{\nu-1}^{(1)}((1-q^2)s;q^2),$$

$$\frac{2\partial_s}{1+q}s^{-\nu}K_{\nu}^{(1)}((1-q^2)s;q^2) = -s^{-\nu-1}K_{\nu+1}^{(1)}((1-q^2)s;q^2)$$

and the difference equation (3.13).

Proposition 4.6 The function $K_{\nu}^{(2)}((1-q^2)s;q^2)$ satisfies the following relations

$$\frac{2\partial_s}{1+q}s^{\nu}K_{\nu}^{(2)}((1-q^2)s;q^2) = -q^{-\nu+1}s^{\nu-1}K_{\nu-1}^{(2)}((1-q^2)s;q^2),$$

$$\frac{2\partial_s}{1+q} s^{-\nu} K_{\nu}^{(2)}((1-q^2)s;q^2) = -q^{-\nu+1} s^{-\nu-1} K_{\nu+1}^{(2)}((1-q^2)s;q^2)$$

and the difference equation (3.14).

Proposition 4.7 For any ν the functions $I_{\nu}^{(1)}((1-q^2)s;q^2)$ and $K_{\nu}^{(1)}((1-q^2)s;q^2)$ form a fundamential system of solutions to the equation (3.13).

Proposition 4.8 For any ν the functions $I_{\nu}^{(2)}((1-q^2)s;q^2)$ and $K_{\nu}^{(2)}((1-q^2)s;q^2)$ form a fundamential system of solutions to the equation (3.14).

Remark 4.1

$$\lim_{q \to 1-0} K_{\nu}^{(j)}((1-q^2)s;q^2) = K_{\nu}(s), \qquad j = 1, 2.$$

Remark 4.2 If $q \to 1-0$ the representations (4.1), (4.4), (4.7) and (4.8) give us the well-known asymptotic decompositions for the functions $I_{\nu}(s)$ and $K_{\nu}(s)$ respectivety [7].

5 The Jackson Integral Representation of the Modified q-Bessel-Functions and q-Bessel-Macdonald Functions

Jackson q-integral is determined as the map an algebra of functions of one variable into a set of the number serieses

$$\int_{-1}^{1} f(x)d_{q}x = (1-q)\sum_{m=0}^{\infty} q^{m}[f(q^{m}) + f(-q^{m})],$$

$$\int_{0}^{\infty} f(x)d_{q}x = (1-q)\sum_{m=-\infty}^{\infty} q^{m}f(q^{m}),$$

$$\int_{0}^{\infty} f(x)d_{q}x = (1-q)\sum_{m=-\infty}^{\infty} q^{m}f(q^{m}),$$

 $\int_{-\infty}^{\infty} f(x)d_q x = (1 - q) \sum_{-\infty}^{\infty} q^m [f(q^m) + f(-q^m)].$

Define the difference operator

$$\partial_x f(x) = \frac{x^{-1}}{1 - q} [f(x) - f(qx)]. \tag{5.1}$$

The following formulas of the q-integration by parts are valid

$$\int_{-1}^{1} \phi(x) \partial_x \psi(x) d_q x = \phi(1) \psi(1) - \phi(-1) \psi(-1) - \int_{-1}^{1} \partial_x \phi(x) \psi(qx) d_q x, \tag{5.2}$$

$$\int_0^\infty \phi(x)\partial_x \psi(x)d_q x = \lim_{m \to \infty} [\phi(q^{-m})\psi(q^{-m}) - \phi(q^m)\psi(q^m)] - \int_0^\infty \partial_x \phi(x)\psi(qx)d_q x. \tag{5.3}$$

$$\int_{-\infty}^{\infty} \phi(x) \partial_x \psi(x) d_q x = \lim_{m \to \infty} [\phi(q^{-m}) \psi(q^{-m}) + \phi(-q^{-m}) \psi(-q^{-m})] - \int_{-\infty}^{\infty} \partial_x \phi(x) \psi(qx) d_q x.$$
 (5.4)

The last two expressions imply the regularizations of the improper integrals.

Let z and s be noncommuting elements and

$$zs = qsz. (5.5)$$

Consider the function

$$f(x) = \sum_{r} a_r x^r. \tag{5.6}$$

The rule of q-integration in the noncommutative case

$$\int f(zs)d_q s = \int \sum_r a_r (zs)^r d_q s = \int \sum_r a_r q^{-\frac{r(r-1)}{2}} z^r s^r d_q s,$$

$$\int d_q z f(zs) = \int d_q z \sum_r a_r (zs)^r = \int d_q z \sum_r a_r q^{-\frac{r(r-1)}{2}} z^r s^r.$$

Define the following transformation $\ddagger f \ddagger$ for functions f depending on the noncommutative variables s and z (5.5). If we have function which has the form (5.6) and all monoms are order we will write

$$f(zs) = \sum_{r} a_r (zs)^r \to \ddagger f(zs) \ddagger = \sum_{r} a_r z^r s^r.$$

Definition 5.1 The function f(z) is absolutely q-integrable if the series

$$\sum_{m=-\infty}^{\infty} q^m f(q^m)$$

converges absolutely.

It means, in particular, that

$$\lim_{m \to \pm \infty} q^m |f(q^m)| = 0$$

It follows from (3.2) - (3.4)

Proposition 5.1

$${}_{0}\Phi_{1}(-;0;q,\frac{1-q^{2}}{2}zs) = \ddagger E_{q}(\frac{1-q^{2}}{2}zs)\ddagger,$$

$$(5.7)$$

$$E_q(\frac{1-q^2}{2}zs) = \ddagger e_q(\frac{1-q^2}{2}zs)\ddagger.$$
 (5.8)

There is a q-analog of classical binomial formula [5]

$$(1-z)^{-a} = \sum_{k=0}^{\infty} \frac{(a)_k}{k!} z^k, \ (a)_k = \frac{\Gamma(a+k)}{\Gamma(a)}, \qquad |z| < 1,$$

$$\frac{(q^{\alpha}z,q)_{\infty}}{(z,q)_{\infty}} = \sum_{k=0}^{\infty} \frac{(q^{\alpha},q)_k}{(q,q)_k} z^k, \qquad |z| < 1.$$

We need in two generalizations of this q-binom

$$r(a,b,z,q) = \frac{(az,q)_{\infty}}{(bz,q)_{\infty}}$$
(5.9)

$$R(a, b, \gamma, z, q^2) = \frac{(az^2, q^2)_{\infty}}{(bz^2, q^2)_{\infty}} z^{\gamma}$$
(5.10)

The function (5.9) satisfies the difference equation

$$z[br(a,b,z,q) - ar(a,b,qz,q)] = r(a,b,z,q) - r(a,b,qz,q).$$
(5.11)

The function (5.10) satisfies the difference equation

$$z^{2}[bq^{\gamma}R(a,b,\gamma,z,q^{2}) - aR(a,b,\gamma,qz,q^{2})] = q^{\gamma}R(a,b,\gamma,z,q^{2}) - R(a,b,\gamma,qz,q^{2}).$$
(5.12)

Lemma 5.1 If |a| < |b| the function r(a, b, z, q) can be represented as the sum of the partial functions

$$\frac{(az,q)_{\infty}}{(bz,q)_{\infty}} = \frac{1}{(q,q)_{\infty}} \sum_{k=0}^{\infty} \frac{(-1)^k q^{\frac{k(k+1)}{2}} (a/bq^{-k},q)_{\infty}}{(q,q)_k (1-zbq^k)}.$$
 (5.13)

The series (5.13) converges absolutely for any $z \neq b^{-1}q^{-k}$, k = 0, 1, ...

Remark 5.1 If 0 < |a| < |b| then

$$\frac{(az,q)_{\infty}}{(bz,q)_{\infty}} = \frac{(a/b,q)_{\infty}}{(q,q)_{\infty}} \sum_{k=0}^{\infty} \frac{(b/aq,q)_{k}(a/b)^{k}}{(q,q)_{k}(1-zbq^{k})}.$$
 (5.14)

If a = 0 then

$$\frac{1}{(bz,q)_{\infty}} = \frac{1}{(q,q)_{\infty}} \sum_{k=0}^{\infty} \frac{(-1)^k q^{\frac{k(k+1)}{2}}}{(q,q)_k (1-zbq^k)}.$$
 (5.15)

Assume that $a=\epsilon q^{2\alpha}, b=\epsilon q^{2\beta}, \epsilon=\pm 1$ in (5.10). Then we have from (5.14)

Corollary 5.1

$$z^{\gamma} \frac{(\epsilon q^{2\alpha} z^2, q^2)_{\infty}}{(\epsilon q^{2\beta} z^2, q^2)_{\infty}} = z^{\gamma} \frac{(q^{2(\alpha-\beta)}, q^2)_{\infty}}{(q^2, q^2)_{\infty}} \sum_{k=0}^{\infty} \frac{(q^{2(\beta-\alpha+1)}, q^2)_k q^{2(\alpha-\beta)k}}{(q^2, q^2)_k (1 - \epsilon z^2 q^{2(\beta+k)})}.$$
 (5.16)

Remark 5.2 As it follows from [5](1.3.2)

$$\frac{(\epsilon q^{2\alpha} z^2, q^2)_{\infty}}{(\epsilon q^{2\beta} z^2, q^2)_{\infty}} = \sum_{k=0}^{\infty} \epsilon^k q^{2\beta k} \frac{(q^{2(\alpha-\beta)}, q^2)_k}{(q^2, q^2)_k} z^{2k}. \tag{5.17}$$

which converges in the domain $|z| < q^{-\beta/2}$.

It follows from Lemma 5.1 that if $\gamma = 0$ (5.16) is the meromorphic function with the ordinary poles $z = \pm \sqrt{\epsilon} q^{-\beta - k}$, k = 0, 1, ..., and hence it is the analitic continuation of (5.17).

Corollary 5.2 For an arbitrary real $s \neq 0$

$$\lim_{m \to \infty} |e_q(i\frac{1 - q^2}{2}q^{-m}s)| = 0.$$

Corollary 5.3 For real $s \neq 0$ and integer m

$$|\cos_q(\frac{1-q^2}{2}q^{-m}s)| \le \frac{E_q(q^{-1})e_q(q)}{1+(\frac{1-q^2}{2})^2q^{-2m}s^2}$$

Corollary 5.4 If $\alpha > \beta + 1$ and real $z \neq 0$, then

$$\frac{(-q^{2\alpha}z^2, q^2)_{\infty}}{(-q^{2\beta}z^2, q^2)_{\infty}} \le \frac{C_{\alpha,\beta}}{1 + z^2q^{2\beta}}$$

Remark 5.3 Let $a = \epsilon q^{2\alpha}$, $b = \epsilon q^{2\beta}$ in (5.10) and (5.12). Then if $q \to 1-0$ the difference equation (5.12) takes the form of the differential equation

$$z(1 - \epsilon z^2)R'(z) - [\gamma + \epsilon(2\alpha - 2\beta - \gamma)z^2]R(z) = 0$$
 (5.18)

with solution

$$R(z) = Cz^{\gamma}(1 - \epsilon z^2)^{\beta - \alpha}.$$

Proposition 5.2 Modified q-Bessel function (q-MBF) $I_{\nu}^{(1)}$ for $\nu > 0$ can be represented as the q-integral

$$I_{\nu}^{(1)}((1-q^2)s;q^2) = \frac{1+q}{2\Gamma_{q^2}(\nu+1/2)\Gamma_{q^2}(1/2)} \int_{-1}^1 d_q z \frac{(q^2z^2,q^2)_{\infty}}{(q^{2\nu+1}z^2,q^2)_{\infty}} E_q(\frac{1-q^2}{2}zs)(s/2)^{\nu}. \tag{5.19}$$

Proof. Consider the q-integral

$$S_1^{(1)}(s) = \int_{-1}^1 d_q z f_{\nu}^{(1)}(z) E_q(\frac{1-q^2}{2}zs), \tag{5.20}$$

where $g_{\nu}^{(1)}(z)$ is such function that it is absolutely convergent. Require that $S_1^{(1)}(s)(s/2)^{\nu}$ satisfies (3.13). Then $S_1^{(1)}(s)$ satisfies the equation

$$S_1^{(1)}(q^{-1}s) - S_1^{(1)}(s) - q^{2\nu}[S_1^{(1)}(s) - S_1^{(1)}(qs)] = (\frac{1 - q^2}{2})^2 q^{-2} S_1^{(1)}(q^{-1}s) s^2.$$
 (5.21)

Substituting (5.20) in (5.21), using the rule of q-integration, (5.8) and (5.2), we come to the difference equation for $f_{\nu}^{(1)}(z)$

$$q^{2\nu+1}z^{2}[f_{\nu}^{(1)}(z) - q^{-2\nu+1}f_{\nu}^{(1)}(qz)] = f_{\nu}^{(1)}(z) - f_{\nu}^{(1)}(qz). \tag{5.22}$$

It coincides with (5.12) for $a = q^2, b = q^{2\nu+1}, \gamma = 0$, and hence

$$f_{\nu}^{(1)}(z) = \frac{(q^2 z^2, q^2)_{\infty}}{(q^{2\nu+1} z^2, q^2)_{\infty}}.$$
 (5.23)

 $S_1^{(1)}(s)(s/2)^{\nu}$ is a solution to (3.13) and therefore it can be represented as (see Proposition 4.7)

$$S_1^{(1)}(s)(s/2)^{\nu} = AI_{\nu}^{(1)}((1-q^2)s;q^2) + BK_{\nu}^{(1)}((1-q^2)s;q^2).$$

Multiplying the both sides on $(s/2)^{\nu}$ and putting s=0 from (3.11) ((4.6) we obtain B=0. Multiplying again on $(s/2)^{-\nu}$ and assuming s=0 we come to

$$\int_{-1}^{1} d_q z f_{\nu}^{(1)}(z) = A \frac{1}{\Gamma_{q^2}(\nu+1)}.$$

It follows from [5] (1.11.7)

$$A = \frac{2}{1+q} B_{q^2}(\nu + 1/2, 1/2) \Gamma_{q^2}(\nu + 1) = \frac{2}{1+q} \Gamma_{q^2}(\nu + 1/2) \Gamma_{q^2}(1/2).$$

and we come to (5.19). At the same way we can prove the following

Proposition 5.3 The q-MBF $I_{\nu}^{(2)}((1-q^2)s;q^2)$ for $\nu>0$ has the following q-integral representation

$$I_{\nu}^{(2)}((1-q^2)s;q^2) = \frac{1+q}{2\Gamma_{q^2}(\nu+1/2)\Gamma_{q^2}(1/2)} \times$$

$$\times \int_{-1}^{1} d_q z \frac{(q^2z^2,q^2)_{\infty}}{(q^{2\nu+1}z^2,q^2)_{\infty}} {}_{0}\Phi_{1}(-;0;q,\frac{1-q^2}{2}q^{\nu+1/2}zs)(s/2)^{\nu}.$$
(5.24)

Remark 5.4 If $q \rightarrow 1-0$ the equation (5.22) takes the form of the differential equation (see Remark 5.3)

$$(1-z^2)f'_{\nu}(z) + (2\nu - 1)zf_{\nu}(z) = 0.$$

The solution to this equation is

$$f_{\nu}(z) = C(1-z^2)^{\nu-1/2}$$

which leads to the classical integral representation of Modified Bessel function [7] (7.12.10)

$$I_{\nu}(s) = \frac{(s/2)^{\nu}}{\Gamma(\nu + 1/2)\Gamma(1/2)} \int_{-1}^{1} (1 - z^2)^{\nu - 1/2} e^{zs} dz.$$

Proposition 5.4 The q-BMF $K_{\nu}^{(1)}((1-q^2)s;q^2)$ for $\nu>0$ can be represented by the q-integral

$$K_{\nu}^{(1)}((1-q^2)s;q^2) = \frac{q^{-\nu^2+1/2}\Gamma_{q^2}(\nu+1/2)\Gamma_{q^2}(1/2)}{4Q_{\nu}}\sqrt{\frac{a_{\nu}}{a_{-\nu}}} \times \int_{-\infty}^{\infty} d_q z \frac{(-q^2z^2,q^2)_{\infty}}{(-q^{-2\nu+1}z^2,q^2)_{\infty}} E_q(i\frac{1-q^2}{2}zs)(s/2)^{-\nu},$$
(5.25)

where \mathbf{Q}_{ν} is defined by (3.9).

Proposition 5.5 The q-BMF $K_{\nu}^{(2)}((1-q^2)s;q^2)$ for $\nu>3/2$ can be represented by the q-integral

$$K_{\nu}^{(2)}((1-q^2)s;q^2) = \frac{q^{-\nu^2+\nu}\Gamma_{q^2}(\nu+1/2)\Gamma_{q^2}(1/2)}{4Q_{1/2}}\sqrt{\frac{a_{\nu}}{a_{-\nu}}} \times \int_{-\infty}^{\infty} d_q z \frac{(-q^{2\nu+1}z^2,q^2)_{\infty}}{(-z^2,q^2)_{\infty}} {}_{0}\Phi_{1}(-;0;q,i\frac{1-q^2}{2}zs)(s/2)^{-\nu},$$
(5.26)

where $Q_{1/2}$ is defined by (3.9).

Remark 5.5 If $q \to 1-0$ the representations (5.25) and (5.26) give us the classical integral representation of Bessel-Macdonald function (the Fourier integral) [7] (7.12.27)

$$K_{\nu}(s) = \frac{\Gamma(\nu + 1/2)(s/2)^{-\nu}}{2\Gamma(1/2)} \int_{-\infty}^{\infty} (z^2 + 1)^{-\nu - 1/2} e^{izs} dz.$$

References

- [1] Podles P. and Woronowicz S.l. Quantum deformation of Lorentz group, Commun. Math. Phys., v.130 (1990) 381
- [2] Jurco B. and Slovachek P. Quantum Dressing Orbits on CompactGroups, Commun.Math.Phys., v.152 (1993) 97-126
- [3] Koornwinder T. Askey-Wilson Polynomials as Zonal Spherical Functions on the SU(2) Quantum Group, Report AM-R9013 (1990)
- [4] Jackson F.H. The application of basic numbers to Bessel's and Legendre's functions, Proc. London math. Soc. (2) 2 (1905) 192-220
- [5] Gasper G. and Rahman M. Basic Hypergeometric Series, Cambridge. Cambridge University Press, (1990)
- [6] Brychkov A., Prudnikov Yu. and Marychev O. Integrals and Series, v. 1, Nauka, Moscow (1986)
- [7] Bateman H. and Erdlyi A. Higher transcendental functions, v. 2 Mc Graw-Hill Book Company. (1966)